Research Group

Neurocybernetics and Rehabilitation

Medical FacultyUniversity Hospital of the Otto von Guericke University MagdeburgLeipziger Straße 20, 39120 Magdeburg, Germany

WELCOME/WILLKOMMEN!

Neuromodulation and neurocybernetics: translational cognitive neuroscience

Gaining knowledge and developing new capabilities are essential throughout our entire lives. Deterioration of learning and memory processes through neurological and psychiatric disease results in substantial challenges both for individuals and society. Moreover, the capacity to learn and relearn skills is central to rehabilitation, such as following stroke.

The development of interventions, with the potential to assist in strengthening these capabilities through neuromodulation, is a rapidly growing field and includes deep brain and transcranial electrical stimulation (DBS; tES) and neurofeedback through training with a brain–computer interface (BCI). Our central aim is to develop and implement these approaches to modulating and supporting the neural processing underlying learning and memory.

Crucial to the development of these methods is a deeper understanding of the neural circuitry underpinning cognitive processing, enabling the translation of cognitive neuroscience into effective neuromodulation. We therefore also seek to identify neural correlates of learning and memory, whose direct modulation improves these capacities, analyzing brain signals recorded using electroencephalography (EEG), magnetoencephalography (MEG), and functional magnetic resonance imaging, as well as intracranial electrophysiological recordings.

Group leader

Prof. Catherine M. Sweeney-Reed, Habil., apl., MBBS, BSc (First Class Hons. Neurosciences),       PhD (Cybernetics), MRCGP, DRCOG, DFFP, DCH, DTM&H 

Staff and students

Johanna Krüger (ehem. Schwertner), Medical doctoral student:

Amr Farahat, Research Assistant:

Katharina Nikolai, Medical doctoral student:

Laila Terzic, Medical doctoral student:

Angela Voegtle, PhD student:

Bruno de Matos Mansur, PhD student:

Catharina Mohrbutter, Medical doctoral student:

Luke Flanagan, Masters student:

Buse Uygun, Masters student:

Alumni

Angela Voegtle, Masters student, then Research Assistant:

Franziska Röhner, Medical doctoral student:

Isabella Barclay, Bachelors student in Medical Sciences (Neuroscience) from the University of Exeter UK on research placement at OVGU:

Maxie Heidrich, Masters Student in Integrative Neuroscience:

Viviana Villafañe Barraza, Masters student, then Research assistant:

I-Chin Tsai, Masters student:

Research Assistant:

Mahima Rebello, Research Assistant:

Kamil Kiliç, Research Assistant:

Clara Terlutter, Medical doctoral student:

Richard Krauth, Medical doctoral student:

Joint supervison, Masters student (co-supervision with Prof. Rahim Hajji, Hochschule Magdeburg-Stendal, as a part of the STACAMA study, in collaboration with Prof. Christian Apfelbacher, Institute of Social Medicine and Health Systems Research, Otto von Guericke University Magdeburg, and Prof. Michael Kabesch, University Children's Hospital Regensburg):

Joint supervison, Masters student (co-supervision with PD Dr. Marcus Heldmann, University of Lübeck):

External collaborations

Our research aims

We aim to deepen our understanding of how the brain processes information with the goal of translating our findings into new approaches to diagnosis, treatment, and rehabilitation of neurological disease. We employ a multimodal approach, including analysis of electroencephalographic (EEG) and magnetoencephalographic (MEG) data, intracranial electrophysiological signals, and functional magnetic resonance imaging (fMRI) data, as well as of the behavioural, clinical, and electrophysiological effects of deep and transcranial brain stimulation, and application of brain–computer interfaces (BCI).

Modulation of neural processing using electrical brain stimulation provides a means of evaluating the causal role of the neural correlates of cognition as well as of potentially enhancing behavioural performance and treating disease. Deep brain stimulation (DBS) is a well-established treatment for essential tremor and is also gaining attention as a treatment for pharmacoresistant focal epilepsy. We had the rare opportunity of recording intracranial electrical brain activity from the anterior and dorsomedial thalamic nuclei (ATN; DMTN) from patients receiving ATN-DBS to treat epilepsy. We provided evidence for an active processing role for the ATN in human episodic memory formation. Moreover, the oscillatory power in the theta frequency range predicted whether a memory would be successfully formed for a subsequent event and also predicted neural correlates of memory formation in the ATN and frontal cortex. We also detected interictal epileptiform discharges in the ATN and DMTN, supporting the hypothesis that both are involved in the propagation of focal epileptic activity.

Transcranial electrical brain stimulation has received growing attention in recent years as a means of improving working memory. Both transcranial direct current (TDCS) as well as alternating current stimulation (TACS) have been investigated. Direct comparison of the methods from the literature is challenging due to the diverse study paradigms and parameters. We are directly comparing these approaches keeping as many parameters constant as is possible given the fundamental differences between the methods. We are also examining the effects of applying TDCS in multiple sessions. Moreover, we are currently investigating the effects of modulation of motor sequence learning through TDCS to the cerebellum and the motor cortex and DBS to the ventral-intermediate nucleus of the thalamus, both on behavioural measures and electrophysiological correlates. These studies of motor learning are a part of a project investigating the effects of DBS to treat essential tremor. We are employing high resolution 7T fMRI and 3T structural MRI to establish whether the VIM has separate subregions engaged in motor learning and tremor. In addition, we are investigating the neural correlates of prospective memory and plan to extend this work to establishing whether performance can be modulated using transcranial electrical stimulation.

BCIs enable direct control of external devices using brain activity, with potential application in rehabilitation, when functional connectivity (FC) between the brain and musculature is impaired or absent, such as following stroke. BCI-controlled timing of functional electrical stimulation of arm musculature as a rehabilitation therapy for chronic stroke patients has been shown to improve arm mobility, putatively by facilitating re-establishment of brain–musculature FC. We are currently investigating this approach in the acute and subacute phases post-stroke, at a time when neural plasticity is deemed to be heightened.

Figure: Intracranial electrophysiological recordings from the human thalamus. (A) Interictal epileptiform discharges (IEDs) from the anterior thalamic nucleus (ATN). (B) IEDs from the dorsomedial thalamic nucleus (DMTN) (Sweeney-Reed et al., J. Neurol., 2016). (C) Illustration of intracranial electrode location. The two most dorsal right-sided contacts in the ATN are superimposed on the pre-operative structural MRI scan: coronal view. Inset: sagittal view. (D) Memory encoding paradigm. (E) Theta power in the right DMTN was greater preceding successful than unsuccessful memory formation (p = 0.012) (Sweeney-Reed et al., NeuroImage, 2016). 

Selected publications

Voegtle A, Mohrbutter C, Hils J, Schulz S, Weuthen A, Brämer U, Ullsperger M, Sweeney-Reed CM (2024). Cholinergic modulation of motor sequence learning. bioRxiv. doi: 10.1101/2023.10.11.561645. Eur. J. Neurosci. (Accepted.)

Reichert C, Sweeney-Reed CM, Hinrichs H, Dürschmid S (2024). A toolbox for decoding BCI commands based on event-related potentials. Front. Hum. Neurosci. 18:1358809. doi: 10.3389/fnhum.2024.1358809

Flanagan L, Mansur B de M, Reichert C, Richter A, Golbabaei S, Kizilirmak JM, Sweeney-Reed CM (2024). Exploring anterior thalamus functional connectivity with cortical regions in prospective memory with ultra-high field fMRI. BioRxiv. doi: 10.1101/2024.02.14.580346

Hartong NEG, Deliano M, Kaufmann J, Sweeney-Reed CM, Voges J, Galazky I, & Büntjen L (2023). Grey or white: what matters? Fraction of white matter tract fibers recruited by deep brain stimulation is causally related to tremor suppression. MedRxiv. doi: 10.1101/2023.12.04.23296587

Sweeney-Reed CM & Knight RT (2023). Memory and the Human Anterior Thalamus. In The Cerebral Cortex and Thalamus. Eds. Usrey WM & Sherman SM. Oxford University Press. ISBN: 9780197676158

Voegtle A, Mohrbutter C, Hils J, Schulz S, Weuthen A, Brämer U, Ullsperger M, Sweeney-Reed CM (2023). Cholinergic modulation of motor sequence learning. bioRxiv. doi: 10.1101/2023.10.11.561645

Villafañe Barraza V, Voegtle A, Mansur BdM, Reichert C, Nasuto SJ, Sweeney-Reed CM (2023). Parietal cortical alpha/beta suppression during prospective memory retrieval. Cerebral Cortex. Online ahead of print. doi: 10.1093/cercor/bhad359

Krueger J, Krauth R, Reichert C, Perdikis S, Vogt S, Dürschmid S, Sickert A, Lamprecht J, Huremovic A, Nasuto SJ, Tsai I-C, Knight RT, Hinrichs H, Lindquist S, Sailer M, del Millán JR, Sweeney-Reed CM. 2023. Hebbian plasticity induced by temporally coincident BCI enhances post-stroke motor recovery. medRxiv. doi: 10.1101/2023.09.28.23296226

Voegtle A, Terzic L, Farahat A, Hartong N, Galazky I, Hinrichs H, Nasuto SJ, Andrade A de O, Knight RT, Ivry RB, Voges J, Deliano M, Buentjen L, Sweeney-Reed CM (2023). Ventrointermediate thalamic stimulation improves motor learning in humans. bioRxiv 2023.09.19.558378; doi: 10.1101/2023.09.19.558378

Sultana M, Reichert C, Sweeney-Reed CM, Perdikis S (2023). Towards calibration-less BCI-based rehabilitation. IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE). Berlin (Manuscript accepted for publication)

Sailer M, Sweeney-Reed CM, Lamprecht J (2023). Non-drug Treatment Approaches and Neurorehabilitation. In: Fatigue in Multiple Sclerosis. Editor: Penner, I-K. Springer Verlag, Cham. doi: 10.1007/978-3-031-13498-2_16. January, 2023 

Schott BH, Voetlause JC, Amoah JL, Kratzenberg A, Belz M, Knipper T, Timäus C, Beskow C, Sweeney-Reed CM, Wiltfang J, Radenbach K (2022). Establishment of a teaching hospital-based dementia consultation service for rurally-based regional district general hospitals. Frontiers in Public Health.10:849161. doi: 10.3389/fpubh.2022.849161. IF 2021: 6.461. 14 November, 2022.

Voegtle A, Reichert C, Hinrichs H, Sweeney-Reed CM (2022). Repetitive anodal TDCS to the frontal cortex increases the P300 during working memory processing. Brain Sciences.12(11):1545. doi: 10.3390/brainsci12111545. IF 2021: 3.333. 14 November, 2022

Voegtle A, Terlutter C, Nikolai K, Farahat A, Hinrichs H, Sweeney‑Reed CM. (2022) Suppression of motor sequence learning and execution through anodal cerebellar transcranial electrical stimulation. Cerebellum. Online ahead of print. doi: 10.1007/s12311-022-01487-0. IF 2021: 3.869. 14 October, 2022

Krueger J, Krauth R, Reichert C, Perdikis S, Vogt S, Huchtemann T, Dürschmid S, Sickert A, Lamprecht J, Huremovic A, Görtler M, Nasuto SJ, Knight RT, Hinrichs H, Heinze H-J, Lindquist S, Sailer M, Millán J del R, Sweeney‑Reed CM (2022). Functional electrical stimulation driven by a brain–computer interface in acute and subacute stroke patients impacts beta power and long-range temporal correlation. IEEE Xplore: Proceedings of the IEEE Workshop on Complexity in Engineering (COMPENG), Florence, Italy, pp. 1-5, doi: 10.1109/COMPENG50184.2022.9905448. 6 October, 2022

Reichert C, Dürschmid S, Sweeney‑Reed CM, Hinrichs H (2022). Visual spatial attention shifts decoded from the electro-encephalogram enable sending of binary messages. IEEE Xplore: Proceedings of the IEEE Workshop on Complexity in Engineering (COMPENG), Florence, Italy, pp. 1-4, doi: 10.1109/COMPENG50184.2022.9905445. 6 October, 2022

Terzic L, Voegtle A, Farahat A, Hartong N, Galazky I, Nasuto S, Andrade A, Knight RT, Ivry R, Voges J, Buentjen L. Sweeney-Reed CM. (2022). Deep brain stimulation of the ventrointermediate nucleus of the thalamus to treat essential tremor improves motor sequence learning. Human Brain Mapping. 43(15):4791-4799. doi: 10.1002/hbm.25989. IF 2021: 5.399. 6 July, 2022

Sweeney-Reed CM, Buentjen L, Voges J, Schmitt FC, Zaehle T, Kam J, Heinze H-J, Hinrichs H, Knight RT, Rugg MD. (2021). The role of the anterior nuclei of the thalamus in human memory processing. Neuroscience and Biobehavioral Reviews. In press. doi: 10.1016/j.neubiorev.2021.02.046. IF 2021: 8.330. 15 Mar., 2021

Kheiroddin P, Gründl M, Althammer M, Schöberl P, Plail L, Cibali E, Schraml K, Scheiber J, Kiesewetter C, Kneissler A, Bartl C, Wallerstorfer D, Barth J-T, Roth SRC, Matei A, Fetz C, Buntrock-Döpke H, Gastiger S, Bodenschatz M, Konrad M, Niggel J, Pagel P, Judex G, Hubmann M, Sweeney-Reed CM, Ambrosch A, Wagner T, Burkovski A, Kabesch M. (2021). How to implement safe, efficient, and cost-effective SARS-CoV-2 testing in 1 urban and rural schools within one month. COVID. 1:717–27. doi: 10.3390/covid1040057.

Sweeney-Reed CM, Wolff D, Faßhauer H, Hörnschemeyer S, Haase A, Schomburg D, Niggel J, Kabesch M, Apfelbacher C. (2021). Feasibility of a surveillance programme based on gargle samples and pool testing to prevent SARS-CoV-2 outbreaks in schools. Scientific Reports. 11: 19521. 30 Sept., 2021

Sweeney-Reed CM, Wolff D, Faßhauer H, Hörnschemeyer S, Haase A, Schomburg D, Niggel J, Kabesch M, Apfelbacher C. (2021). Pooltestverfahren mit Gurgelproben zur Vermeidung von Ausbrüchen von SARS-CoV-2 in Schulen (STACAMA). Ärzteblatt Sachsen-Anhalt. Sept., 2021

Sweeney-Reed CM, Wolff D, Niggel J, Kabesch M, Apfelbacher C. (2021). Pool testing as a strategy for avoidance of SARS-CoV-2 outbreaks in schools (STACAMA): protocol for a feasibility study. JMIR Research Protocols. (Preprint). doi: 10.2196/preprints.28673.

Reichert C, Tellez Ceja IF, Sweeney-Reed CM, Heinze H-J, Hinrichs H, Dürschmid S. (2020). Impact of stimulus features on the performance of a gaze-independent brain-computer interface based on covert spatial attention shifts. Frontiers in Neuroscience. 14: 591777. doi: 10.3389/fnins.2020.591777. IF2021: 3.707. 1 Dec., 2020

Krueger J, Reichert C, Dürschmid S, Krauth R, Vogt S, Huchtemann T, Lindquist S, Lamprecht J, Sailer M, Heinze H-J, Hinrichs H, Sweeney-Reed CM. (2020). Rehabilitation nach Schlaganfall: Durch Gehirn–Computer-Schnittstelle vermittelte funktionelle Elektrostimulation (Brain–computer interface driven functional electrical stimulation for motor rehabilitation following stroke). Klinische Neurophysiologie. 51(3):144-55. doi: 10.1055/a-1205-7467. 29 Sept., 2020

Galazky I, Zaehle T, Sweeney-Reed CM, Neumann J, Heinze H-J, Voges J, Kupsch A, Hinrichs H. (2020). Neuronal oscillations of the pedunculopontine nucleus in progressive supranuclear palsy: Influence of levodopa and movement. Clin. Neurophysiol. 131(2):414-9. doi: 10.1016/j.clinph.2019.11.033. IF2020: 3.708. 12 Dec., 2019

Farahat A, Reichert C, Sweeney-Reed CM, Hinrichs H. (2019). Convolutional neural networks for decoding of covert attention focus and saliency maps for EEG feature visualization. Journal of Neural Engineering. (In press.) doi: 10.1088/1741-2552/ab3bb4. IF 2019: 4.551. 21 July, 2019

Buentjen L, Kupsch A, Galazky I, Frantsev R, Heinze HJ, Voges J, Hausmann J, Sweeney-Reed, CM. (2019).Long-term outcomes of semi-implantable functional electrical stimulation for central drop foot.Journal of Neuroengineering and Rehabilitation.16(1):72. doi: 10.1186/s12984-019-0542-8. IF 2017: 3.865. 11 June, 2019

Galazky I, Kaufmann J, Voges J, Heinze H-J, Hinrichs H, Sweeney-Reed CM. (Electronic publication ahead of print: 2019). Neuronal spiking in the pedunculopontine nucleus in progressive supranuclear palsy and in idiopathic Parkinson’s disease. J Neurol. IF 2017: 3.783. doi: 10.1007/s00415-019-09396-9. 21 May, 2019

Eick C, Ahmadi K, Sweeney-Reed CM, Hoffmann M. (2019). Interocular transfer of visual memory - influence of visual impairment and abnormalities of the optic chiasm. Neuropsychologia. 129: 171-8. doi: 10.1016/j.neuropsychologia.2019.03.018. IF 2017: 2.888. 2 Apr., 2019

Krauth R, Schwertner J, Vogt S, Lindquist S, Sailer M, Sickert A, Lamprecht J, Perdikis S, Corbet T, Millán JdR, Hinrichs H, Heinze H-J, Sweeney-Reed CM. (2019). Cortico-muscular coherence is reduced acutely post-stroke and increases bilaterally during motor recovery. Frontiers in Neurology. 10: 126.

Kizilirmak J, Schott B, Thuerich H, Sweeney-Reed CM, Richter A, Folta-Schoofs K, Richardson-Klavehn A. (2019). Learning of novel semantic relationships via sudden comprehension is associated with a hippocampus-independent network. Consciousness and Cognition. 69: 113-132.

Pawlitzki M, Sweeney-Reed CM, Bittner D, Lux A, Vielhaber S, Schreiber S, Friedemann P, Neumann J. (2018). CSF-Progranulin and Neurofilament light chain levels in patients with radiologically isolated syndrome - sign of inflammation. Frontiers in Neurology.12: 761.

Pawlitzki M, Sweeney-Reed CM, Meuth SG, Reinhold D, Neumann J. (2018). CSF macrophage migration inhibitory factor levels did not predict steroid treatment response after optic neuritis in patients with multiple sclerosis. PLoSone. 13(11): e0207726.

Röhner F, Breitling C, Rufener KS, Heinze H-J, Hinrichs H, Krauel K, Sweeney-Reed CM. (2018). Modulation of working memory using transcranial electrical stimulation: a direct comparison between TACS and TDCS.  Front. Neurosci. 12: 761.

Liebe T, Li M, Colic L, Munk MHJ, Sweeney-Reed CM, Woelfer M, Kretzschmar MA, Steiner J, von Düring F, Behnisch G, Schott BH, Walter M. (2018). Ketamine influences the locus coeruleus norepinephrine network, with a dependency on norepinephrine transporter genotype – a placebo controlled fMRI study. Neuroimage Clin. 20: 715-23.

Pawlitzki M, Übelhör J, Sweeney-Reed CM, Stephanik H, Hoffmann J, Lux A, Reinhold D. (2018). Lower serum zinc levels in patients with multiple sclerosis compared to healthy controls. Nutrients: 10(967): 1-9.

Sweeney-Reed CM, Nasuto SJ, Vieira M, Andrade AO. (2018). Empirical mode decomposition and its extensions applied to EEG analysis: a review. Advances in Data Science and Adaptive Analysis: 10(2): 1840001.

Borchardt V, Surova G, van der Meer J, Bola M, Frommer J, Leutritz AL, Sweeney-Reed CM, Buchheim A, Strauß B, Nolte, T, Olbrich, S, Walter, M. (2018). Exposure to attachment narratives dynamically modulates cortical arousal during the resting state in the listener. Brain and Behavior. 8(7): e01007.

Liebe T, Li S, Lord A, Colic L, Krause AL, Batra A, Kretzschmar MA, Sweeney-Reed CM, Behnisch G, Schott BH, Walter M. (2017). Factors influencing the cardiovascular response to subanesthetic ketamine: a randomized, placebo-controlled trial. Int J Neuropsychopharmacol. 20(11): 909-18.

Sailer M, Sweeney-Reed CM, Lamprecht, J. (2017). Roboter- und gerätegestützte Rehabilitation der oberen Extremität. Akt Neurol. 44(08): 555-60.

Sailer M, Sweeney-Reed CM, Lamprecht, J. (2017). Robot-assisted and device-based rehabilitation of the upper extremity. Neurology International Open. 01(03): E242-6.

Pawlitzki M, Neumann J, Kaufmann J, Heidel J, Stadler E, Sweeney-Reed CM, Sailer M, Schreiber S. (2017). Loss of corticospinal tract integrity in early MS disease stages. Neurol. Neuroimmunol. Neuroinflamm. 4(6): e399.

Sweeney-Reed CM, Zaehle T, Voges J, Schmitt FC, Buentjen L, Borchardt V, Walter M, Hinrichs H, Heinze HJ, Rugg MD, Knight RT. (2017). Anterior thalamic high frequency band activity is coupled with theta oscillations at rest. Front. Hum Neurosci. 20(11): 358.

Li S, Demenescu LR, Sweeney-Reed CM, Krause AL, Metzger CD, Walter M. (2017). Novelty seeking and reward dependence-related large-scale brain networks functional connectivity variation during salience expectancy. Hum. Brain Mapp. 38(8): 4064-77.

Kopitzki K, Oldag A, Sweeney-Reed CM, Machts J, Veit M, Kaufmann J, Hinrichs H, Heinze HJ, Kollewe K, Petri S, Mohammadi B, Dengler R, Kupsch AR, Vielhaber S. (2016). Interhemispheric connectivity in amyotrophic lateral sclerosis: A near-infrared spectroscopy and diffusion tensor imaging study. Neuroimage Clin. 29(12): 666-72.

Oldag A, Neumann J, Goertler M, Hinrichs H, Heinze H-J, Sweeney-Reed CM, Kopitzki K. (2016). Near infrared spectroscopy and transcranial sonography to evaluate cerebral autoregulation in middle cerebral artery steno-occlusive disease. J. Neurol. 263(11): 2296-301.

Sweeney-Reed CM, Lee H, Rampp S, Zaehle T, Buentjen L., Voges J, Holtkamp M, Hinrichs H, Heinze H-J, Schmitt FC (2016). Thalamic interictal epileptiform discharges in deep brain stimulated epilepsy patients. J. Neurol. 263(10): 2120-6.

Sweeney-Reed CM, Zaehle T, Voges J, Schmitt F, Buentjen L, Kopitzki K, Richardson-Klavehn A, Hinrichs H, Heinze H-J, Knight RT, Rugg MD (2016). Pre-stimulus thalamic theta power predicts human memory formation. Neuroimage 138: 100–108.

Sweeney-Reed CM, Zaehle T, Voges J, Schmitt FC, Buentjen L, Kopitzki K, Richardson-Klavehn A, Hinrichs H, Heinze H-J, Knight RT, Rugg MD. (2016). Neuropsychological profile and pre-stimulus dorsomedial thalamic nucleus theta power associated with successful memory formation in deep brain stimulation patients. Data Br. 8: 557–561.

Borchardt V, Krause AL, Li M, van Tol MJ, Demenescu LR, Buchheim A, Metzger CD, Sweeney-Reed CM, Nolte T, Lord AR,Walter M. (2015).Dynamic disconnection of the supplementary motor area after processing of dismissive biographic narratives. Brain Behav.5(10): e00377.

Hausmann J, Sweeney-Reed CM, Sobieray U, Matzke M, Heinze H-J,Voges J, Buentjen L.(2015).Functional electrical stimulation through direct 4-channel nerve stimulation to improve gait in multiple sclerosis: a feasibility study. Neuroeng Rehabil.12(1): 100.

Körtvélyessy, P., Gukasjan, A., Sweeney-Reed, C.M., Heinze, H.-J., Thurner, L., Bittner, D.M. (2015). Progranulin and amyloid-β Levels: relationship to neuropsychology in frontotemporal and Alzheimer’s Disease. Journal of Alzheimer's Disease. 46(2): 375-80.

Sweeney-Reed CM, Zaehle T, Voges J, Schmitt FC, Buentjen L, Kopitzki K, Hinrichs H, Heinze H-J, Rugg MD, Knight RT, Richardson-Klavehn A.  (2015). Thalamic theta phase alignment predicts human memory formation and anterior thalamic cross-frequency coupling. eLife 4: e07578.

Sweeney-Reed CM, Zaehle T, Voges J, Schmitt FC, Buentjen L, Kopitzki K, Esslinger C, Hinrichs H, Heinze H-J, Knight RT, Richardson-Klavehn A. (2014). Corticothalamic phase synchrony and cross-frequency coupling predict human memory formation. eLife 3: e05352.

Daly I, Faller J, Scherer R, Sweeney-Reed CM, Nasuto SJ, Billinger M, Müller-Putz G. (2014).Exploration of the neural correlates of cerebral palsy for sensorimotor BCI control. Front. Neuroeng. 7(20).

Daly I, Sweeney-Reed CM, Nasuto SJ. (2012). Testing for significance of phase synchronisation dynamics in the EEG. J Comput. Neurosci.34(3): 411-32.

Sweeney-Reed CM, Riddell PM, Ellis JA, Freeman JE,  Nasuto SJ. (2012). Neural correlates of true and false memory in mild cognitive impairment. PLoSOne 7(10):e48357.

Sweeney-Reed, CM, Nasuto, SJ. (2009). Detection of neural correlates of self-paced motor activity using empirical mode decomposition phase locking analysis. J. Neurosci. Meth. 184: 54–70.

Sweeney-Reed CM, Nasuto SJ. (2007). A novel approach to the detection of synchronisation in EEG based on empirical mode decomposition. Journal of Computational Neuroscience. 23(1): 79-111.

Andrade AO, Nasuto SJ, Kyberd P, Sweeney-Reed CM, van Kanijn FR. (2006). EMG signal filtering based on empirical mode decomposition. Biomedical Signal Processing and Control 1(1): 44-55.

Andrade AO, Nasuto SJ, Kyberd P, Sweeney-Reed CM. (2005). Generative topographic mapping applied to clustering and visualization of motor unit action potentials. Biosystems 82: 273-84. 

Where to find us

Medical FacultyUniversity Hospital of the Otto von Guericke University MagdeburgLeipziger Straße 2039120 MagdeburgGermany
Tel. +49(0)391-67-28224










Medizinische FakultätUniversitätsklinikum der Otto-von-Guericke-Universität MagdeburgLeipziger Straße 20, 39120 Magdeburg, Deutschland
Tel. +49(0)391-67-28224